

Published on Web 04/14/2006

Nucleophilic Addition to (3-Methylpentadienyl)iron(1+) Cations: Counterion Control of Regioselectivity; Application to the Enantioselective Synthesis of 4,5-Disubstituted Cyclohexenones

Subhabrata Chaudhury and William A. Donaldson*

Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881

Received August 18, 2005; E-mail: william.donaldson@marquette.edu

Nucleophilic attack on coordinated polyenes is one of the paradigms of π -organometallic chemistry.¹ We and others have examined the reactivity of (pentadienyl)iron(1+) cations, in particular for applications to organic synthesis.² These studies indicate that the regioselectivity of nucleophilic attack depends on the nucleophile, substituents present on the pentadienyl ligand, and "spectator" ligands on iron. As part of our interest in the synthesis of diterpenes containing a 3-methyl-1,3Z-pentadienyl side chain³ we have recently prepared the symmetrical iron(1+) cations **1a** and **b** (Scheme 1). As part of these studies, we now report a counterion-controlled regioselectivity of nucleophilic attack.⁴

Scheme 1

Reduction of the known⁵ dienoate complex 2a gave the alcohol 3a, which upon acid-mediated dehydration gave the (tricarbonyl)iron ligated cation 1a (Scheme 1). In a similar fashion, ligand substitution of 2a with triphenylphosphine, followed by reduction and acid-mediated dehydration, gave the PPh₃(CO)₂ ligated cation 1b.

The reaction of **1a** with lithium dimethyl malonate gave the 1,3*Z*diene complex *rac*-**4a** in good yield (Table 1, entry 1). In contrast,

Table 1. Nucleophilic Addition to (3-Methylpentadienyl)Fe(1+)

entry	cation	counterion/nucleophile	4a/4b/5a	6/7/8/9
1	1a	LiCH(CO ₂ Me) ₂	4a (80%)	
2	1a	$NaCH(CO_2Me_2^a)$		6 (91%)
3	1a	LiCH(CO ₂ Me) ₂ /12-crown-4 ^a		6 (84%)
4	1a	NaCH(CO ₂ Me) ₂ /ZnCl ₂	4a (60%)	
5	1a	LiC(Me)(CO ₂ Me) ₂	5a (45%)	
6	1a	$NaC(Me)(CO_2Me)_2^a$	5a (34%)	7 (55%)
7	1b	NaCH(CO ₂ Me) ₂	4b (93%)	` '
8	1a	LDA/methyl cyclohexanecarboxylate	· · · ·	8 $(80\%)^b$
9	1a	KPhth ^c		9 (34%) ^d

^{*a*} After 2 h, the reaction mixture was diluted with CH₂Cl₂, and methanolic NaHCO₃ was added. The mixture was stirred for an additional 18 h. ^{*b*} The product is a 6:1 mixture of 2- and 3-cyclohexenones. ^{*c*} Reaction solvent is acetone, and the crude reaction mixture was treated with CAN/CH₃CN to effect complete decomposition of the iron acyl intermediate. ^{*d*} The product is a 2.5:1 mixture of 2- and 3-cyclohexenones.

the reaction of **1a** with *sodium* dimethyl malonate exhibited copious decomposition upon standing. Treatment of the reaction mixture with methanolic NaHCO₃ lead to isolation of the 4,5-disubstituted

cyclohexenone *rac*-6 (entry 2).⁶ Furthermore, the reaction of **1a** with lithium dimethyl malonate in the presence of 12-crown-4 gave only the cyclohexenone product 6, while reaction of **1a** with sodium dimethyl malonate/ZnCl₂ gave only the diene complex **4a**. In a similar fashion, reaction of **1a** with lithium methyl dimethylmalonate anion afforded the diene complex **5a** (entry 5), while reaction of the sodium salt of methyl dimethylmalonate gave a separable mixture of **5a** and cyclohexenone **7**.⁶ In contrast, reaction of the (CO)₂PPh₃ ligated cation **1b** with sodium dimethyl malonate gave the diene complex **4b**. Formation of cyclohexenone products is not limited to malonate anions; reaction of **1a** with the anion from methyl cyclohexanecarboxylate or with phthalimide gave **8** or **9**.

The (diene)iron complexes 4a/4b/5a arise via nucleophilic attack at C1, while the cyclohexenone products 6-9 are formed via nucleophilic attack at the C2 internal carbon to generate a (pentenediyl)iron complex 10 (Scheme 2).⁷ Carbonyl insertion⁸ into

Scheme 2

10 affords the acyl complex **11** which upon reductive elimination gives the 3-cyclohexenone **12**. Workup with methanolic NaHCO₃ effects conjugation to give the product **6**/**7**. It has been previously noted that the site of nucleophilic attack is dependent on the nucleophile and on "spectator" ligands present on the metal.⁹ The above results indicate that the regioselectivity for attack on **1a** is also dependent on the counterion of the nucleophile. On the basis of ¹³C NMR spectroscopy¹⁰ and DFT calculations^{11c} the C2/C4 carbons of the pentadienyl ligand are believed to bear greater partial positive charge than the C1/C3/C5 positions, while molecular orbital calculations indicate that the LUMO of the (dienyl)iron cations has greater orbital contribution from C1/C5 than from C2/C4.^{10a,12} Thus,

Acknowledgment. This material is based upon work supported by the National Science Foundation (CHE-0415771). Mass spectrometry was provided by the Washington University Mass Spectrometry Resource, an NIH Research Resource (Grant No. P41RR0954).

Supporting Information Available: Details of experimental procedures, characterization, and analytical data for the products (18 pages, PDF). This material is available fee of charge via the Internet at http://pubs.acs.org.

References

- (1) McQuillen, F. J.; Parker, D. G.; Stephenson, G. R. Transition Metal Organometallics for Organic Synthesis; Cambridge University Press: Cambridge, U.K., 1990.
- (2) (a) For a compilation of references up to 1997, see: Donaldson, W. A. Aldrichemica Acta 1997, 30, 17-24. (b) Motiei, L.; Marek, I.; Gottlieb, H. E.; Marks, V.; Lellouche, J.-P. Tetrahedron Lett. 2003, 44, 5909-5912. (c) Li, S.; Donaldson, W. A. Synthesis 2003, 2064-2068. (d) Yun, Y. K.; Godula, K.; Cao, Y.; Donaldson, W. A. J. Org. Chem. 2003, 68, 901-910.
- (3) (a) Nabeta, K.; Oohata, T.; Izumi, N.; Katoh, K. Phytochemistry 1994, 37, 1263-1268. (b) Kanokmedhakul, S.; Kanokmedhakul, K.; Kanarsa, T.; Buayairaksa, M. J. Nat. Prod. 2005, 68, 183-188. (c) Gaspar-Marques, C.; Simoes, M. F.; Duarte, A.; Rodriguez, B. J. Nat. Prod. 2003, 66, 491-496.
- (4) A dependency of nucleophile-cation association on the regioselectivity for nucleophilic attack on the terminal carbons of an unsymmetrically substituted (cyclohexadienyl)iron(1+) cation has been reported. Pearson, A. J.; Perrior, T. R.; Rees, D. C. J. Organomet. Chem. 1982, 226, C39-C42
- (5) Adams, C. M.; Cerioni, G.; Hafner, A.; Kalchhauser, H.; von Philipsborn, W.; Prewo, R.; Schwenk, A. *Helv. Chim. Acta* **1988**, *71*, 1116–1142.
- (6) The 4,5-cis stereochemistry was assigned on the basis of ¹H NMR spectral data. In particular, the signals for H^3 of 6 and 7 (δ 6.11 and 6.20 ppm, respectively) each appear as dd (J = 10.1, 6.1 Hz). The 6.1 Hz coupling is consistent with a pseudoequatorial disposition for H⁴. For example, a cis-4-methyl-5-substituted cyclohexenone was prepared as an intermediate in the synthesis of mevinolin/compactin: Clive, D. L. J.; Murthy, K. S K.; Wee, A. G. H.; Prasad, J. S.; da Silva, G. V. J.; Majewski, M.; Anderson, P. C.; Evans, C. F.; Haugen, R. D.; Heerze, L. D.; Barrie, J. R. J. Am. Chem. Soc. 1990, 112, 3018-3028.
- (7) The formation of cyclohexenones from nucleophilic attack of organolithiums on (pentadienyl)iron(1+) cations has previously been reported: McDaniel, K. F.; Kracker, L. R., II; Thamburaj, P. K. *Tetrahedron Lett.* 1990, 31, 2373-2376.
- (8) Carbonyl insertion into (pentenediyl)iron complexes and reductive elimination have previously been reported: (a) Aumann, R. J. Am. Chem. Soc. 1974, 96, 2631-2632. (b) Schulze, M. M.; Gockel, U. J. Organomet. Chem. 1996, 525, 155–158. (c) Taber, D. F.; Kanai, K.; Jiang, Q.; Bui, G. J. Am. Chem. Soc. 2000, 122, 6807–6808.
- (9) Donaldson, W. A.; Shang, L.; Tao, C.; Yun, Y. K.; Ramaswamy, M.; Young, V. G., Jr. J. Organomet. Chem. 1997, 539, 87-98. Pearson, A. J.; Yoon, J. Tetrahedron Lett. 1985, 26, 2399-2402.
- (10) (a) Dobosh, P. A.; Gresham, D. G.; Lillya, C. P.; Magyar, E. S. *Inorg. Chem.* **1978**, *17*, 1775–1781. (b) Birch, A. J.; Westerman, P. W.; Pearson, A. J. Aust. J. Chem. **1976**, *29*, 1671–1677.
- (a) Clack, D. W.; Monshi, M.; Kane-Maguire, L. A. P. J. Organomet. Chem. 1976, 107, C40-C42. (b) Hoffmann, R.; Hofmann, P. J. J. Am. (11)Chem. Soc. 1976, 98, 598–604. (c) Pfletschinger, A.; Schmalz, H.-G.; Koch, W. Eur. J. Inorg. Chem. 1999, 1869–1880.
- (12) (a) Eisenstein, O.; Butler, W. M.; Pearson, A. J. Organometallics 1984, 3, 1150–1157. (b) Pearson, A. J.; Burello, M. P. Organometallics 1992, 11, 448-456
- (13) (a) Pearson, A. J.; Blystone, S. L.; Nar, H.; Pinkerton, A. A.; Roden, B. A.; Yoon, J. J. Am. Chem. Soc. 1989, 111, 134–144. (b) Pearson, A. J.; Khetani, V. D.; Roden, B. J. Org. Chem. 1989, 54, 5141–5147. Notably, (14) Quinkert, G.; Schwartz, U.; Stark, H.; Weber, W. D.; Adam, F.; Baier, H.; Frank, G.; Duerner, G. *Liebigs Ann. Chem.* **1982**, 1999–2040.
- A similar reduction of chiral 4,5-disubstituted cyclohexenones (prepared by nucleophilic addition/protonation of (arene)Cr(CO)₃ complexes) was previously reported: Pearson, A. J.; Gontcharov, A. V. *J. Org. Chem.* **1998**, *63*, 152–162.

JA055668Y

while attack at C1/C5 is attributed to frontier orbital control.9 In the present case, for the sodium salts (and $Li^+/12$ -crown-4), the malonate anion is expected to be completely dissociated, and thus nucleophilic attack is anticipated to occur under charge control. In comparison, for the lithium salts (and Na⁺/ZnCl₂), there should be greater association between the malonate anion and the counterion; this decreased polarization in electron density would lead to frontier orbital controlled nucleophilic attack. It should be noted that the steric bulk of the nucleophile may play an additional role on the regioselectivity of nucleophilic attack (entry 6). In the case of lithium methyl cyclohexanecarboxylate (entry 8), attack at C2 may be due to the greater strength of this nucleophile, compared to malonate (i.e., charge control).

Previous efforts at the desymmetrization of achiral (cyclohexadienyl)- and (cycloheptadienyl)iron(1+) cations with chiral sulfoximinyl acetates^{13a} or chiral N-acetyl- or N-propionyl oxazolidinones^{13b} resulted in enantioselectivities ranging from 11 to 60% ee. With these precedents in mind, we therefore sought the desymmetrization of achiral cation 1a. To this end, reaction 1a with sodium bis[(-)-8-phenylmenthyl]malonate¹⁴ gave the cyclohexenone (-)-13 as a single diastereomer in excellent yield (Scheme 3). Luche

Scheme 3

reduction of (-)-13 gave the equatorial cyclohexenol 14.15 Assignment of the absolute stereochemistry at the carbinol carbon was based on the ¹H NMR chemical shifts of the alkenyl proton (H²) of the derived (S)- and (R)- Mosher's esters 15 and 16 (δ 5.41 and 5.33 ppm, respectively). These relative chemical shifts are consistent with an (R)-stereochemical assignment at C1, and therefore C5 is assigned as (S).

The diastereoselectivity for addition of the chiral malonate to 1a is rationalized in the following fashion. Nucleophilic attack occurs on the face of the pentadienyl ligand opposite to the Fe metal, and the malonate is oriented such that the π -system of the nucleophile is synclinal with respect to the electrophilic π -system (i.e., the C1-C2 bond) (Figure 1). Steric interaction between the phenyl substitutent and the pentadienyl ligand present in TS2 (see arrow) is expected to raise the energy of this transition state compared to TS1.

Figure 1. Diastereomeric transition states for attack on 1a. [Fe(CO)₃], which points away from view, is not shown for clarity.

In conclusion, the malonate-cation association controls the regioselectivity for nucleophilic attack on 1a. Use of strongly associated salts of malonate gave C1 nucleophilic attack, while COMMUNICATIONS